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Let us call the quantieetion axis of the spin eigenstates of the Hamiltonian of e particle 
circulating in a storage ring fi, i.e. the operator Z.6 commutes with the Hamiltonian: 
(Z.jl ,7-1} = 0, where { , } denotes a Poisson Bracket. The defining properties of iL were 
given by Derbenev and Kondratenko,’ and are (i) 5 satisfies the equation of spin motion 

&i - 
-j.+lXi”’ (1) 

where fi is the spin precession vector, and (ii) n satisfies the periodicity conditions 

ii(I,$,tJ) = 7?(1,$ $2x,8) = 6(1,&e + 2x) . (2) 

Here {I,+} denotes the set of orbital action-angle variables, i.e. 6 depends on the orbital 
trajectory. Thus there is not just one value of ic for all trajectories, but an infinite set, one 
for each value of {I, I&}. 

The above definition is rather abstract, and in general ti has been calculated exactly 
only on the closed orbit of a storage ring. Perturbation theory has had to be used to find 
iL on other trajectories.’ There is a simple non-trivial model, however, where one can solve 
for it exactly, and that is the point of this note. 

The model is a vertical static field plus a horizontal field rotating at tune Q. We 
decompose fi in Eq. (1) into fi = 6, + S, where 6s is the value on the closed orbit and w’ 
is the additional term due to an orbital oscillation. Then 

!=i, = vi 

(3) 

The vertical field is the main field that makes the particles circulate around the ring, 
and w’ is the perturbation due to spin-orbit coupling. Here +s is the initial phase of the 
orbital oscillation, and e describes the strength of the spin-orbit coupling. The coordinate 
system is 2 radial, c longitudinal and i vertical. A positive rotation is counterclockwise. 
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The above model cannot be constructed exactly in a storage ring, because real mag- 
nets produce more than one harmonic in 2. However, the above model is still a valid 
Hamiltonian system, and is a good approximation near the resonance Y = Q. 

Let us first review the case where c = 6, only. Then the spin precesses around &J, 
which is a constant vector, and the solution for fi is obvious: it is just ri 11 &, i.e. ti = i. 

We now consider fi = 6, +3. We first transform to a frame rotating counterclockwise 
et tune Q around i. Then the spin precession tune around i becomes Y-Q and 3 becomes 
stationary. Using primes to denote vectors in the new trame, 

fi’ = (v - Q)i t t[i’cos(&) +$sin(&)] = (V - Q)i +? . (4) 

In this frame a” precesses around $, which is e constant. The solution for 5 is fi 11 fi’, i.e. 

(5) 

We therefore see that +i is the spin rotation axis in the frame where the Hamiltonian 

is stationary. The diagonalized Hamiltonian is 

u = liorb t i-‘ii’ 

= QI t J(v - Q)2 $ cz s”.fi (6) 

In other frames, where 7f is not stationary, C.6 still commutes with the Hamiltonian in 
that frame, because of the invariance of Poisson Brackets under canonical transformations, 
i.e. {Z.jL ,‘H} = 0 in all frames related to the above by a canonical transformation (a proof 
of this statement is given in Ref. 3). (H ere 7i means the Hamiltonian in the frame after 
the canonical transformation.) In the original reference frame, the solution is 

iL= (Y-Q)itc[Zcos$+~sin$] 

,,/(I/ - Q)2 + e2 ’ 
(7) 

This obviously satisfies the periodicity conditions Eq. (2). Notice that 6 is not parallel to 

fi. The vector ?I is constrained to be a unit vector in all frames, whereas 6 is not. Hence 
they transform differently under canonical transformations. The Derbenev-Kondratenko 
definition (Eqs. (1) and (2)) all ows one to calculate +I purely in terms of functions specified 
in one frame, without the need for canonical transformations, which can be complicated, 
in general. 
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The above model also helps one to understand the distribution_of spin eigenstates 
in equilibrium, e.g. in a high-energy electron storage ring. When D 11 i only, all the 
eigenstates are quantized vertically, and so the polarization will be vertical also. When 
fi is not the same for all trajectories, the spin states will be quantized along 5 for each 
trajectory, because that is the spin precession axis when the Hamiltonian is stationary. 
The equilibrium distribution of spins will be a cone of vectors (jL), where the average is 
over the equilibrium distribution of orbital actions and angles. The “local polarization” 
for particles in a small phase-space volume element dI d$ around {I,$} will thus point 
along ri, end the “global polarization” is given by the phase-space average 

ge4 = 
J 

f(I,$) (s’.G) 5 dIdtl, , 

where f is the probability density function of particles in orbital phase space and (s’.fi) is 
the average spin projection of particles along ri in the volume element did+ around {I,$}. 
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